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Abstract 

Models and maps for predicted soil properties produced over agricultural areas of Australia using legacy soil 

survey data have been viewed with suspicion by many, yet these are key to the success of projects such as 

the GlobalSoilMap.net. While the modelling procedure encompassed a statistical model uncertainty 

assessment, that assessment is short of an accuracy assessment of the predicted maps. Here models and 

predicted maps for topsoil (0-30 cm) soil organic C, total N, and total P are presented and assessed against 

new independent data that serves as ground-truth for an accuracy assessment of the maps. The map of 

predicted SOC is credible, more so than the map of total N that consistently over-estimates N. 
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Introduction 

During the first phase of the National Land and Water Resources Audit (NLWRA) the Australian Soil 

Resources Information Systems (ASRIS) project in 2001, a relatively large point database of soil properties 

was created by collating various legacy databases into a single Oracle database (Johnston et al. 2003). 

Depending on the soil property, 5,000 to 24,000 points had useful data. Using this point database linked to 

national environmental data for climate (19 continuous variables), geology (23 discrete classes), land use (14 

discrete classes), 4 Landsat MSS bands, and topography (14 continuous terrain variables), rule induction 

using Cubist (http://www.rulequest.com) decision trees was used to predict the spatial distribution of soil 

properties across the intensively used agricultural areas of Australia (Henderson et al. 2001). In this talk, 

models and predicted maps for soil organic C (SOC), total N and P in the 0-30 cm depth interval will be 

presented and assessed. The maps have been produced at 0.01° resolution (~1.1 km) and are part of the 

Australian Natural Resources Atlas, available from: http://www.nlwra.gov.au/national-land-and-water-

resources-audit/atlas.  

 

Modelling and statistical diagnostic assessment 

Cubist models are presented as a series of rules, each with starting with conditional if statement that subsets 

the data. Continuous predictor variables can feature as splitting criteria in conditional statements and in the 

linear regressions at each leaf of the piecewise linear decision trees but categorical predictors can only be 

used to subset the data. Models were constructed with a 70:30 training to test data split: 70% of the 

observations were randomly selected to construct the model in the model development stage; 30% were held 

back in order to assess the performance of each model. Once the strongest possible model according to 

performance on the test data was identified, it was refitted using all the data to maximize the use of the 

relatively sparse data over Australia, with the same model form and options. The performance of the model 

on the full data set was assessed by 10-fold cross validation. The data were randomly split into 10 partitions 

or folds; at each step, nine of these partitions were used to fit the model and the performance assessed on the 

remaining partition held back as the test data. This procedure was repeated for each partition sequentially. 

The performance, averaged over all 10 partitions held back, delivers the cross-validated performance 

assessment. The performance of models was also assessed in terms of a number of key indicators: the 

number of points used in the model, the R
2 
between measured and predicted values, the (rank) correlation, 

the RMSE (root mean square error), which gives an estimate of the standard deviation of the errors, the 

average error, and the relative error. The average error gives the average absolute difference between the 

observed and predicted values, i.e 

Lower average errors imply that the predicted values are closer to the observed values more often. The 
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average error is also known as the mean absolute deviation. The relative error is defined as the ratio of the 

average absolute error magnitude to the average error magnitude that would result from predicting the mean 

value:  

If there is little improvement on the mean, the environmental variables have little predictive capacity and the 

relative error is close to 1. Generally, the smaller the relative error, the better the model. These model 

diagnostic statistics were reported for the model test subset and for discrete regions of Australia in 

(Henderson et al. 2001). They are summarized in Table 1 for the Cubist models used to map SOC and P.  

 
Table 1. Performance of final Cubist models used to make predictions and map the soil properties  

 

 

Because of a strong correlation between SOC and total N and the poor spatial distribution of points with N 

measurements, N was predicted as a function of SOC: log N= -2.6589 + 0.8761 log  SOC (Henderson et al. 

2001). The simple linear regression model for total N appeared to over-predict N at the low end but its 

statistical performance assessment was good: RMSE was relatively low (0.42 on the log scale, R
2
 = 0.75) 

(Henderson et al. 2001). 
 

Knowledge-based assessment 

The modelling is not explicitly spatial, i.e., it does not use geographical coordinates as predictors, rather, 

spatial structure is introduced implicitly by reliance on predictors that are available spatially extensively. In 

the absence of newly collected, independent ground-truth data, evaluation of the models in a spatial context 

can proceed via an evaluation of the spatial distribution of the predictors in the context of model structure 

(Bui et al. 2006). ASRIS maps were thus assessed against expert knowledge in natural sciences using 

visualization of model rules and of patterns of usage of predictor variables—what variables were important 

in models, whether consistent patterns emerged in their thresholds, and the spatial pattern defined by these 

thresholds (Bui et al. 2006).  
 

The Cubist model for soil organic C had 29 rules whereas the model for total P had 18 rules—the smaller 

number of rules for the P model suggests that the environmental correlation patterns are more evident in that 

dataset. The model for total P performed better than that for SOC in terms of model evaluation statistics 

(Table 1) however both appeared reasonable in terms of their predicted spatial patterns and what is known 

about the soil processes driving these soil nutrient patterns (Bui et al. 2006). Climatic variables alone were 

the most important predictors in the SOC model whereas lithology was also important in the total P model. 

Visualization of model rules showed a spatial correspondence between extent of rules and bioregions of 

Australia, as independently determined by the Interim BioRegionalization of Australia expert committee. A 

major spatial pattern in climatic thresholds seemed to correspond to soils with SOC > 2% and to the 

distribution of rainforests and Eucalyptus forests along the Australian coast. 
 

Independent assessment/Validation  

The diagnostic performance evaluation gives an estimate of the uncertainty associated with the models. 

However the accuracy of the predictions from the models still needs to be assessed—in remote sensing 

research, this is referred to as ‘validation’ and is usually performed by collecting independent ground-truth 

data.  The dataset reported in the Auxiliary Material of Wynn et al. (2006) has been used as an independent 

dataset for validation of the predictions in ASRIS. The data of Wynn et al. (2006) were collected over 1999-

2002 using a sampling design spatially stratified across the range of Australian native vegetation formations, 

and analysed by a single laboratory procedure (LECO furnace) for SOC and total N for depth 0-30 cm, near 

and away from trees. Unfortunately, no P data are reported. A total of 25 points overlap with the ASRIS 

extent. 

Model diagnostics SOC Total P 

Number of points used  

11483 

 

7377 

R
2 
(predicted vs observed) 0.49 0.83 

Average error 0.38 0.61 

Relative error 0.64 0.49 
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While it appears that the SOC model for the topsoil layer (0-30 cm) is relatively poor based on the Cubist 

statistical model evaluation (Table 1), validation against independent data collected by Wynn et al. (2006) 

suggests that the predictions are better than suggested by the Cubist model diagnostic statistics (Figure 1). 

This discrepancy is likely due to the laboratory measurement errors associated with different SOC 

determination procedures pooled together in the ASRIS database (Henderson et al. 2001; Johnston et al. 

2003): the ASRIS point database used to build and test the Cubist models contains a lot of errors. 

Nevertheless the Cubist algorithm was able to identify meaningful structure under fairly low signal to noise 

conditions to generate a credible model for topsoil SOC.  
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Figure 1.  Relationship between SOC predicted with ASRIS data and data reported by Wynn et al. (2006). R

2
 

between predictions and SOC_30_T (near trees) is 0.84 and R
2
 between predictions and SOC_30_G (away from 

trees, in grass) is 0.84. There is a tendency toward over-estimation of SOC.  

 

Because of its reliance on the linear regression relationship with SOC, the total N map incorporates errors in 

the underlying SOC map. Validated against the data of Wynn et al. (2006), the modelled map for total N was 

found to be consistently over-estimating N throughout the range of N values (Figure 2), not only at the low 

end as suggested by Henderson et al. (2001). The likely error at high N content is much larger than at low N. 
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Figure 2.  Relationship between total N predicted with ASRIS data and data reported by Wynn et al. (2006). R

2
 

between predictions and N_30_T (near trees) is 0.76 and R
2
 between predictions and N_30_G (away from trees, 

in grass) is 0.77. 

This problem starts with the tendency toward over-estimation in the SOC map but is also partially due to the 
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logarithmic transformation of N and SOC data in the linear regression model used to produce the N map. 

Plotting SOC against total N on a linear graph shows that there are two sub-populations, a large one 

associated with a C:N ratio of ~12 and another smaller one associated with C:N ratio of > 12 (Figure 3); 

these are not so evident on a log-log graph. Soils with a high C:N ratio have a low N content and their N 

level may be over-estimated by the model used to make the total N map. 
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Figure 3.  A) Relationship between topsoil SOC and total N on linear axes; B) Error in N predicted becomes 

exponentially larger as C:N increases. 

 

Conclusion 

Whereas uncertainty assessment of the models using statistical diagnostics appeared to suggest that the SOC 

map was not likely to be reliable, accuracy assessment against newly collected independent data suggests 

that the map is credible, although it shows a slight tendency toward over-estimation. The map of total N 

over-estimates N content consistently, especially at the upper end of the range—this shows how errors can be 

propagated and amplified during modelling.  The P map could not be independently assessed for its 

accuracy. Although the independent dataset is small it demonstrates that ground-truth is essential for 

accuracy assessment of digital soil mapping predictions and that even a limited number of ground-truth 

points can be informative. 
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